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Pittsburgh West LiDAR and DEMs used to Create Predictive Models for 

Hydrologic Flow Nets and Local Land Subsidence   

 
1. Abstract 

This paper explores the use of LiDAR and Digital Elevation Models (DEMs) for analyzing land 

surfaces with respect to hydrologic discharge and land subsidence. Higher resolution 1-meter 

DEMs from flown LiDAR data are replacing older 30- and 10-meter resolution DEMs, providing 

more accurate projections. Rasters created from this high-resolution elevation data can be used to 

create predictive flow models and land subsidence models using GIS. The National Hydrologic 

Dataset (NHD) and the Soil Survey Geographic Database (SSURGO) are valuable sources of data 

for both hydrologic discharge and soil taxonomy. Pittsburgh, a city with steep terrains, is 

surrounded by mountains and receives a decent amount of precipitation, making it a hotbed for 

landslides. The paper describes methods used to create flow nets, calculate topographic moisture 

index (TMI), and create a failure index model for areas at high risk of landslides. 

2. Introduction 

LiDAR and Digital Elevation Models (DEMs) can be used to analyze land surfaces with respect 

to hydrologic discharge and land subsidence. Older 30- and 10-meter resolution DEMs are 

systematically being replaced with higher resolution 1-meter DEMs from flown LiDAR data. 

Plotting data from all three of the resolutions shows the slight variance in elevation differences, 

with the most accurate projection being LiDAR. With this high-resolution elevation data, it is 

easier to use rasters to create predictive flow models, as well as land subsidence models using GIS. 

The National Hydrologic Dataset (NHD), as well as the Soil Survey Geographic Database 

(SSURGO) offered valuable data for both hydrologic discharge and soil taxonomy for use in 

calculating drainage nets and land failure models. According to NOAA, Pittsburgh is a city with 

steep terrains, and is surrounded by mountains; additionally, it receives a decent amount of 

precipitation, having a 30-year average of 39.61 in/yr. Due to the terrain, geology and amount of 

precipitation that Pittsburgh receives, it has become a hotbed for landslides. Understanding the 

amount of water and where it goes, along with soil type and location, predictive surfaces can be 

calculated for areas which have a high risk of landslides. See the reference map for spatial clarity 

(fig.1).  

3. Methods 

3.1 Spatial profile and hillshade analysis 

For this work, raster data from the Pennsylvania Spatial Data Access (PASDA) was used. LiDAR 

(1-meter), 30-meter, and 10-meter DEMs were utilized. The rasters used were imagery obtained 

over west Pittsburgh. After loading the data into ArcGIS Pro, the tiles were extracted to create 

equally sized raster tiles based on the LiDAR size. Once the sizes were equalized, the tiles were 

stacked on top of each other, and a transect was drawn from the northwestern corners to the 

southeastern corner of the tile stack. This ensured that the profile was uniform across all three 

DEMs. The transect generated an attribute table which was populated with elevation vs distance 

data. The 10, 30, and LiDAR data points were all plotted against each other to discern if there were 
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any difference. (fig. 2). A 3-panel figure was also created to compare the three DEM resolutions 

(fig. 3). 

 3.2 Flow net analysis 

After evaluating the spatial profile, a flow net was created using the LiDAR data. First, the DEM 

was filled. Next, the flow direction was calculated using the filled DEM. The flow accumulation 

was then calculated using the previous output. 

 3.3 National Hydrologic Dataset vs calculated flow net 

For this step, the methods remained the same from 3.2, only using NHD data for the same area. 

Flow line data for west Pittsburgh was downloaded and geoprocessed. Once the flow net was 

created using the NHD data, it was able to be used for the creation of a topographic moisture index 

based on NHD data.  

 3.4 Calculating topographic moisture index (TMI) for the Original and NHD flow nets 

A slope map was created from the LiDAR DEM using the “slope” processing tool. Percent slope 

was used to ensure that the output was tan(β). Using the raster calculator, the TMI was calculated 

using the following equation: 

TMI =  ln (
(

𝑓𝑙𝑜𝑤 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛)
𝑓𝑖𝑙𝑙𝑒𝑑 𝑠𝑙𝑜𝑝𝑒

)

100
) 

The output raster from this equation gave the TMI values for the LiDAR DEM (fig. 4). The 

original TMI output was layered over the NHD TMI output for comparison (fig. 5). 

 3.5 Creating a failure index model 

The final part of this lab involved creating the failure index model. First, the relevant data from 

SSURGO was downloaded. The soil raster was loaded into ArcGIS and extracted to be the same 

size as the lidar tile. The SSURGO data table was then joined to the SSURGO tile via ‘mukey’, 

which is a unique identifier for soil map units within the SSURGO database. This 10-digit code 

allows the data to be joined with a GIS. Once this join was completed, raster layers were created 

for the average depth (AVG_THK), hydraulic conductivity (AVG_KSAT) and bulk density 

(AVG_BD) (fig.6). These rasters were extracted to be the same size as the LiDAR tile. The soil 

transmissivity in m2/day was calculated in the raster calculator using the following equation: 

 

𝑇 = ((𝐴𝑉𝐺𝑇𝐻𝐾) ∗ (𝐴𝑉𝐺𝐾𝑆𝐴𝑇) ∗ 0.000864) 

 

where 0.000864 is a conversion factor which transforms soil depth and hydraulic conductivity 

units to soil transmissivity in m2 per day. The conversion looks like this: ((1/106) / (1/60/60/24) 

*(1/100)). 

After this, the wetness factor (W) was created as its own raster using the following equation: 

 

𝑊 = (
𝑞𝐴

𝑏𝑇𝑠𝑖𝑛𝜃
) 

 

where, ‘q’ is data derived from 2-year storm data for the area. This data can be obtained from 

NOAA’s national weather service, specifically, the hydrometeorological design studies center. For 
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this model, 2-year, 24-hour data was used. ‘A’ is the drainage area – this was calculated in part 

3.2. T is the transmissivity which was calculated above. B indicates the size of the pixels, so this 

value was one since all pixels were equally sized. The slope layer was used as ‘θ’, however the 

slope needed to be recalculated and converted to radians. Once this raster was created, the ‘con’ 

function was used to remove extreme values which were skewing the dataset.  

 

Once the wetness factor was created, the completed failure index was created using the following 

formula: 

 

𝐹 = (
𝑡𝑎𝑛𝜃

𝑡𝑎𝑛𝜑
) (1 −  𝑊 (

𝜌𝑤

𝜌𝑠
))

−1

 

 

where, ‘tan(θ)’ is the local slope, φ is the friction angle, and the ρ’s are the bulk density of the 

water and soil, respectively. W was already calculated from above. Three separate friction angles 

were used for comparison. The 20º to 40º range is commonly used, so 25º, 35º, and 40º were used 

as friction angles. These again had to be converted to radians to be used in the equation. Since 

standard temperature and pressure (STP) was assumed, the bulk density of water was considered 

to be 1 g/cm3. The bulk density of the soil was given from the SSURGO data as AVG_BD. New 

raster layers were then created for all three of the failure angles. A calculation on paper might look 

something like this: 

 

𝑇 = (1.542 𝑚) (5 ∗ 106
𝑔

𝑚3
) (0.000864) =

(8.52 ∗ 105)𝑚2

𝑑𝑎𝑦
 

 

𝑊 =
(5.97 ∗ 10−3𝑚)(1.51 ∗ 108𝑚2)

(1)(8.52 ∗ 105𝑚2/𝑑𝑎𝑦)sin (0.174)
=  0.177 𝑚/𝑑𝑎𝑦 

 

𝐹 = (
tan(0.174)

tan(0.436)
) (1 − 0.177

𝑚

𝑑𝑎𝑦
 (

(
(1 ∗ 106)𝑔

𝑚3 )

(5 ∗
106𝑔
𝑚3 )

)  )

−1

=  0.39
𝑚

𝑑𝑎𝑦
  

 

4. Results and discussion  

The hillshade outputs from 3.1 helped to visualize the difference in precision across the three 

different DEMs (see fig.3). As expected, the LiDAR hillshade appeared to be the most precise and 

the 30-meter data was the least precise (see fig. 3). These hypotheses were confirmed by the plot 

which was created to compare the transect of the 3 slopes (see fig. 2). While the 30- and 10-meter 

rasters showed slight variations in their distance to elevation points, the LiDAR show significant 

differences from both the 10 and 30 meters DEMs – up to 20 meters in certain areas. The 1-meter 

LiDAR data is much more precise when it comes to capturing small variation in a landscape, so 

these results were not unexpected. It is recommended to work with LiDAR data if it is available 
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due to its precision. This is why the LiDAR data was used to the rest of the geoprocessing in this 

lab.  

 
Fig. 1 – Reference map for DEM locations in West Pittsburgh 
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Fig. 2 – Plotted transect data from a combined transect. The LiDAR, 10- and 30-meter data are aligned on top of one 

another. Discrepancies can be seen as the precision increases with resolution.  

 
Fig.3 – Three-panel figure showing the different hillshades derived from 1-, 10- and 30-meter digital elevation 

models. 
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In part 3.2, the flow directions were calculated using ‘filled’ landscapes. The flows corresponded 

to a cardinal direction which were represented by different colors. ‘Filling’ the landscape helped 

to smooth out sinks and peaks in the data using a designated z-value. Outliers and abnormalities 

are calculated using the surrounding pixels, along with the z-value. Once these are removed, a 

smoother surface is generated. While this can be a useful tool to ensure the uniformity of the 

outputs, it can also bias the data. Removing peaks and sinks removes some of the natural variations 

in the landscape. A plot of a filled vs raw LiDAR tile can be seen below (fig. 7a ,7b). This skews 

the average slope, which in turn skews the flow lines. The flow accumulation outputs a raster 

(which is based on the flow direction output) and determines the accumulated flow into each 

downhill cell. Flow is minimal in most places, which is why this output was mostly black, with 

few colored pixels. This was true of both the original and NHD outputs.  

The TMI was created by taking the natural log of the flow accumulation raster. This creates a much 

more detailed layer, showing the total wetness in the catchment area. Controls on the flow 

accumulation and TMI are based off of the actual surface topography, as well as the bulk density 

of the sediment, hydraulic conductivity and sediment depth. Discharge can also depend on the 

saturation of the sediments. Soils which have more of a capacity to absorb water (such as a sand) 

could reduce the flow, whereas an increased percentage of dense, porous substrate, like a clay, 

could cause increases flow. The SSURGO data supplied classified soil types to each area. This 

was important to include because of the relationship between hydraulic conductivity, soil 

permeability and flow. 
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Fig.4 – Original TMI surface before being overlain with the NHD surface.  
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Fig.5 – The original flow net overlaid with the NHD flow net. 
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Fig. 6 – Bulk density map using ‘conned’ values from the SSURGO dataset. 
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Fig. 7a – A side by side plot for filled vs raw LiDAR data. 

 
Fig. 7b – Raw LiDAR data plotted on top of filled LiDAR data. Very little variation can be seen from this plot. It is 

possible that the surface did not need to be statistically adjusted very much due to the lack of outlying peaks and 

sinks. 
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The NHD flow net, which was created in the same manner as the original flow net, output a very 

detailed surface which matched up relatively well with the original TMI surface when overlaid 

The bias from ‘filling’ was apparent in the relative minima and maxima for each map. NHD data 

went as high as 12, while the original TMI only went up to around 3.5. Given that this is the same 

area, it is likely that variations in the z-value created statistical discrepancies in the respective 

landscapes. By all accounts, the two outputs should have had relatively similar maxima and 

minima, yet they were off by almost an order of magnitude. The number of pixels for each of the 

TMI charts were plotted, on a log scale, against a TMI scale for reference (fig 8.).  

 

 
Fig.8 – The distribution of pixels in the TMI plot from both the NHD and original TMI plots. The data has been 

displayed on a log scale for visual clarity.  

 

The failure indices were created once the hydrologic data had been generated. Three distinct 

friction angles were used to generate three failure models. Friction angles are the critical angle for 

sediment on a hillslope. Once this angle is exceeded, the sediment can no longer resist against 

gravity, causing it to collapse or slide. While these kinds of models can be very useful for creating 

predictive surfaces, they have some severe limitations. First, friction angles only account for the 

raw sediment on the hillslope. Many other factors, such as additional support from tree roots and 

human-caused disruption, can impact sediment collapse. Additionally, these surfaces are 
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stochastic – it is impossible to accurately predict when and where exactly a landslide will occur 

based on the previous history of the land surface. The spatial distribution of the pixels from all of 

the failure angles was plotted and can be seen below (fig. 9). Similarly, calculating predictive 

surfaces with different friction angles can still give an idea of how likely an area is to collapse or 

slide. As can be seen from the three-panel figure (fig. 10), the likelihood of a slide depends greatly 

on the friction angle. All other factors being the same, the likelihood of a slide increased greatly 

in some areas and were non-existent in others when only the friction angle changes. Strangely, the 

steeper angles generated surfaces which were much less likely to fail, and in fewer areas, than the 

gentler angles. This can be observed in the three-panel figure (see fig. 10). This was initially 

unexpected, but upon further examination and research it became clearer. Lower friction angles 

can indicate that the sediment on the slope has less resistance to the force of gravity, as the steeper 

angle has to work much harder to fighter against gravity. Additionally, a lower angle can indicate 

that the sediment or rock is generally weaker in the first place, making it more susceptible to 

gravity. This creates a cycle of weakening the slope and reducing resistance to gravity even further. 

The failure areas, in general, corresponded very well to the slope map and to the TMI surfaces. 

The steepest slopes corresponded directly to the areas which had the largest likelihood of failure 

in the final failure layers. Additionally, it seemed to be generally true that the wettest areas on the 

TMI maps also corresponded to the failure maps (it should be noted that this conclusion was drawn 

only from visuals, not rigorous comparison of the datasets). 

 

 
Fig. 9 – All three friction angles vs distribution of pixels based on their value. They all followed a similar curve, 

with 25º following the cleanest, highest curve. 
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Fig. 10 – A three-panel figure showing the likelihood of land subsidence based on friction angles of 25º, 35º, and 

40º. The legend indicated values both below and above 1 in different ranges. Values above 1 indicate higher 

likelihood of failure.   

  

 

 

5. Conclusion 

Overall, the use of flow nets to create a failure index can be a very helpful method for 

understanding changing landscapes and predicting where landslides could be most likely to 

occur. The limitations of this method included the failure angle not being entirely accurate 

because of other forces, such as tree roots, acting on the sediment. Additionally, human 

intervention in landscapes could also greatly impact the likelihood and location of landslides. 

With the limitations in mind, the friction angle still had a very large impact on each of the 

predictive surfaces, with the steepest angle having the least likelihood of a landslide, and the 

lowest angles having the greatest likelihood of landslides, and in more areas. Moreover, the 

failure surfaces aligned well with both the slope and TMI maps. This indicated that both slope 

and soil saturation (i.e., hydraulic conductivity) have a large, if not direct impact on the 

likelihood of a landslide occurring in a given area. (Note: full-sized images of the failure panels 

will be provided at the bottom of the report for clarity).  
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