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Abstract 

This analysis and discussion section presents the results of hot spot analysis and spatial 

autocorrelation using the Getis-Ord Gi* statistic and Global Morans 1 index, respectively, to 

identify patterns and relationships in river centerline data errors. The hot spot analysis confirmed 

the presence of hot spots with a high level of confidence for errors related to 'not a river' and 

'oxbow lakes'. The missing centerline errors were also analyzed, revealing hot spots in the 

northwest corner and central region of the region of interest. The results were consistent with the 

overall error density map. Spatial autocorrelation analysis showed a significant spatial relationship 

between centerlines ending abruptly and river width, as well as a strong correlation between 

missing centerlines and river width. The findings highlight the importance of considering various 

factors, such as river width, in remote sensing analyses. However, limitations due to small dataset 

size and other factors, such as cloud and tree cover, should also be taken into account. Overall, this 

analysis provides insights into the spatial patterns and relationships in river centerline data errors, 

contributing to a better understanding of the data quality and potential sources of errors in remote 

sensing analyses. 

 

 

 

 

 

 

 

 

 

 



3 

 

 

Table of Contents 

Abstract ........................................................................................................................................... 2 

List of Figures ................................................................................................................................. 4 

1. Introduction ............................................................................................................................. 6 

1.2 Background ........................................................................................................................... 7 

2. Literature Review.................................................................................................................... 8 

2.1 Optimized Hot Spot Analysis with Hierarchical Density Based Spatial Clustering ............ 8 

2.2 Spatial Autocorrelation using the Moran’s 1 Statistic .......................................................... 9 

2.3 Hierarchical Density Based Spatial Clustering (HDBSCAN) .............................................. 9 

2.4 Empirical Bayesian Kriging (EBK) ...................................................................................... 9 

3. Methods..................................................................................................................................... 10 

3.1 Background on Data and Data Acquisition ........................................................................ 10 

Figure 1 - The Amazon Basin with its rivers shown in white. 11 

3.2 Creating New Error Feature Classes ................................................................................... 12 

3.3 Optimized Hotspot Analysis (OHS) ................................................................................... 12 

3.4 Spatial Autocorrelation Analysis ........................................................................................ 13 

3.5 Hierarchical-Density Based Spatial Clustering (HDBSCAN) ............................................ 13 

3.6 Empirical Bayesian Kriging ................................................................................................ 14 

Figure 2 - Initial map setup and feature class creation workflow.. ....................................... 15 

4. Analysis and Discussion ........................................................................................................... 15 

4.1 Hot Spot Analysis using Getis-Ord Gi* Statistic ................................................................ 15 

Eq. 1 - Getis-Ord Gi* equation16 

Figure 3 - Optimized hotspot analysis for all errors combined ............................................ 17 

Figure 4 - Optimized hot spot analysis for 'not a river' error ................................................ 18 

Figure 5 - Optimized hot spot analysis for 'Oxbow lakes' error ........................................... 19 

Figure 6 - Optimized hot spot analysis for 'Missing centerline portions' error ..................... 20 

Figure 7 - Optimized hot spot analysis for dam cluster ........................................................ 21 

4.2 Spatial Autocorrelation using Global Morans 1 ................................................................. 22 

Eq. 2 - Global Moran’s 1 z-score equation ........................................................................... 22 

4.3 Hierarchical Density Based Spatial Clustering ................................................................... 24 

Figure 9 - HDBSCAN Clustering for all errors combined25 



4 

 

Figure 10 - Hierarchical clustering dendrogram of the HDBSCAN clusters for all errors.. 26 

4.4 Empirical Bayesian Kriging ................................................................................................ 26 

Eq. 3 - General kriging equation.. ......................................................................................... 27 

Figure 11 - Empirical Bayesian Kriging surface based on error ID ..................................... 28 

Figure 12 - Empirical Bayesian Kriging error surface based on error ID ............................ 29 

5. Conclusion ................................................................................................................................ 30 

Special thanks ........................................................................................................................... 30 

Appendix A: Source Code ............................................................................................................ 31 

R- Source code for hierarchical cluster analysis and dendrogram ........................................ 31 

Appendix B: Supporting workflows ............................................................................................. 32 

Figure 13 - OHS analysis workflow ..................................................................................... 32 

Figure 14 - Spatial autocorrelation workflow ....................................................................... 32 

Figure 15 - HDBSCAN workflow ........................................................................................ 33 

Figure 16 - EBK workflow ................................................................................................... 33 

Works Cited .................................................................................................................................. 34 

 

List of Figures 
Figure 1 - The Amazon Basin ........................................................ Error! Bookmark not defined. 

Figure 2 - Initial map setup and feature class creation workflow. It should be noted that several 

of the steps were repeated for accuracy. This is what the duplicate arrows indicate. .................. 15 

Figure 3 - Optimized hotspot analysis for all errors combined .................................................... 17 

Figure 4 - Optimized hot spot analysis for 'not a river' error ........................................................ 18 

Figure 5 - Optimized hot spot analysis for 'Oxbow lakes' error ................................................... 19 

Figure 6 - Optimized hot spot analysis for 'Missing centerline portions' error ............................. 20 

Figure 7 - Optimized hot spot analysis for dam cluster ................................................................ 21 

Figure 8 - Stream Order Count ...................................................... Error! Bookmark not defined. 

Figure 9 - HDBSCAN Clustering for all errors combined ........................................................... 25 

Figure 10 - Hierarchical clustering dendrogram of the HDBSCAN clusters for all errors. A 

dendrogram is a ‘tree-like’ plot which shows, in this case, a correlation between the distance and 

the hierarchy of cluster values. Closer distances tend to correlate with higher clustering values. 26 

Figure 11 - Empirical Bayesian Kriging surface based on error ID ............................................. 28 

Figure 12 - Empirical Bayesian Kriging error surface based on error ID .................................... 29 



5 

 

Figure 13 - OHS analysis workflow ............................................................................................. 32 

Figure 14 - Spatial autocorrelation workflow ............................................................................... 32 

Figure 15 - HDBSCAN workflow ................................................................................................ 33 

Figure 16 - EBK workflow ........................................................................................................... 33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 

 

1. Introduction 

The Amazon Basin is one of the most biodiverse places on the planet. While the exact number of 

species is unknown, the basin is thought to be home between 50,000 to 80,000 plant species and 

2.5 to 5 million animal species. In addition to being a bastion of biodiversity, the Amazon 

rainforest is one of the largest carbon sinks in the world. It is impossible to determine the exact 

amount of CO2 that the rainforests remove from the atmosphere yet, estimates suggest that nearly 

two billion tons of carbon dioxide (CO2) are removed each year. The Amazonian rainforests are 

of crucial importance to regulate the carbon cycle on the planet and help to regulate other planetary 

systems. More research needs to be adopted due to increase focus on learning about deforestation 

and its effects. Increases in human deforestation in the Amazon have been the cause of increasing 

concern, especially as climate change and the focus on carbon dioxide emissions become more 

pressing. Being able to differentiate between deforestation, which is caused naturally, versus 

anthropogenic deforestation is an important and developing field of research. 

Remote sensing is used to identify areas in the Amazon Basin that are being deforested. Rivers in 

the Amazon basin are very dynamic, meaning that their centerlines change from year to year due 

to meandering. This meandering can greatly impact bank erosion rates, leading to the rivers’ 

positions shifting greatly over relatively short periods of time. This meandering motion is common 

in the Amazon because of the large amount of cohesion caused by roots from land plants. The high 

drainage densities in the basin also impact this rate of centerline change. High drainage densities 

are common in the basin because it is home to the largest river in the world, the Amazon River. 

Many of its branches and tributaries are nearly as large.  

Using automatic mapping methods on remotely sensed imagery (Landsat 1 -8) in the basin has 

allowed for areas which are water to be identified, as well as for their centerlines to be mapped, 

spanning back to the mid 1980s. Automatic mapping algorithms are not perfect though – errors 

can still be made. Areas such as oxbow lakes used to be part of river channels. Earlier remote 

sensing databases have these sections as being part of an active fluvial system, meaning that at one 

point in time they would have had centerlines. This can lead to errors in accurately identifying 

actively flowing bodies. 
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The aim of this research was to manually find and determine the errors created by the automatic 

mapping process, as well as determine if there was any spatial or relational significance to 

environmental variables.  

1.2 Background 

Once the errors were found and identified, statistical analyses were run on the datasets to determine 

if any areas in the region were most affected by automatic mapping errors. These analyses included 

using optimized hop spot analysis and high-density clustering to determine if there were any error 

hotspots and/or clusters, as well as their locations. Additionally, spatial autocorrelation using the 

Global Moran’s 1 statistic was run on errors two and four. Lastly, a kriging surface, as well as a 

kriging error surface were created to predict areas of high error density. This was accomplished 

using Empirical Bayesian Kriging. 

The five error classes which were identified in this research were as follows: 

1. Areas which are not part of a river but were automatically identified as one. 

2. Areas where the centerlines abruptly end. 

3. Oxbow lakes which used to be part of a river but were cut off into separate bodies by 

meandering processes over time. 

4. Areas where the river centerlines are missing in either small or large chunks. 

5. Man-made reservoirs which have been automatically identified as river bodies. 

Each of the five errors classes in this research will have areas where they are most prevalent. The 

errors are different in nature and are likely to be caused by different elements. Below are the 

proposed regions where each of the errors will be statistically significant: 

1. Not a river: Many of the lakes in the middle of the basin will be mapped as rivers, due to 

their slow flows.  

2. Centerlines end: The northwest region of the basin is where most of the headwaters 

originate for the rivers in the basin. This region is very mountainous, and the rivers are 

much narrower here. This region yields more abrupt ending of centerlines. Additionally, 

there are many regions in the middle of the basin which have downstream tributaries that 

narrow. 
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3. Oxbow lakes: Both the southern and middle regions of the basin have large sections of 

rivers which are heavily braided and meandering.  

4. Missing centerline areas: Similar to the centerlines end error, the width of the river is 

thought to have a significant correlation with continuous centerlines. These errors in the 

mountainous northwest region, as well as small branch tributaries are anticipated to have 

statistically significant relationship to the width of the river. 

5. Reservoirs: The reservoirs which have mistakenly been mapped as flowing bodies will 

most likely see their hot spots in the southern region, where deforestation and urbanization 

are the most prevalent in the region. These reservoirs are hypothesized to have spatially 

significant relationships to the location of dams in the region as well.  

It should be noted that dams tend to originate around human settlements and activities. These dams 

can be used for several purposes, including hydroelectric power and reservoir creation. 

2. Literature Review  

2.1 Optimized Hot Spot Analysis with Hierarchical Density Based Spatial Clustering 

Hotspots were compared to hierarchical clusters to confirm their statistical significance (Zerbe et 

al., 2022). This study used hierarchical clustering and optimized hot spot analysis to characterize 

spatial and temporal variation of large wildfires in Washington State. These fire datasets started in 

1970 and ended in 2020. Large amounts of points were able to be analyzed using these two 

methods relatively easily. While their study included the temporal aspect, the statistical analysis 

of this study does not directly do so. Certain parameter choices were justified based on this study, 

including the choice to use a hexagon grid as opposed to a fishnet grid. The choice to arbitrarily 

set a cluster density for the hierarchical clusters calculated by Hierarchical Density Based Spatial 

Clustering (HDBSCAN) was influenced and justified by Zerbe et al. (2022). Using a hexagon grid 

reduces the distortion from the earth’s curvature more efficiently than a fishnet grid. With the 

Amazon basin being over 6,000,000 km2, it was especially important to preserve projection 

property and avoid distortion (Agarwadkar et al. 2013). Literature also reinforced the choice to use 

optimized hotspot analysis (OHS) analysis to determine whether hierarchical clusters followed the 

same trend as hotspots (Zerbe et al., 2022). 
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2.2 Spatial Autocorrelation using the Moran’s 1 Statistic 

Spatial autocorrelation is used in GIS to determine if proximity to a given feature with respect to 

another feature is statistically significant. These outputs give a p-value and z-score, both of 

which can be used to show statistical significance. They can be used in tandem or separately. 

Roberts et al. (2000) used spatial autocorrelation to determine if there was a geostatistical 

significance between polygons displaying woodland fragmentation. These fragments were sorted 

into large, medium and small sizes and analyzed in a number of ways, including clustering. 

Spatial autocorrelation was used to determine spatial relationships between the different 

polygons in the respective size frames which they were assigned to. This remains a useful tool in 

GIS for determining the significance of spatial relationships.  

2.3 Hierarchical Density Based Spatial Clustering (HDBSCAN) 

Hierarchical Density based Spatial Clustering can be broadly applied in GIS. It does have some 

downsides, as outlined Grubesic et al. (2001). These include the fact that HDBSCAN uses an 

arbitrary user input for what defines a meaningful cluster. What constitutes a ‘meaningful’ cluster 

must be chosen by the researcher within the context of the question being asked. This might be 

considered a shortcoming; however, this input allows researchers to have more control over their 

clustering analysis (How Density-Based Clustering Works—ArcGIS pro | Documentation, n.d.).  

Other authors, such as Zerbe et al. (2022)., have used this technique to produce meaningful results 

in their study on wildfires in Washington State.  

2.4 Empirical Bayesian Kriging (EBK) 

EBK differs from traditional kriging by accounting for errors introduced from estimations in the 

semivariogram model (Krivoruchko & Gribov, 2019). A case study from Giustini et al. (2019) 

used EBK to create a prediction surface which used geochemical data taken from the area. This 

study used EBK to create a ‘Geogenic Radon Potential’ map which was used to assess and 

predict the severity of radon expose to people living in the volcanic region in central Italy under 

study (Giustini et al., 2019). While this study predicted levels of radon to people living in the 

area, the use of EBK and the EBK regression model are broad. EBK cam be used for any kind of 

spatial research which involves predicting the location of something based on pre-existing data. 

Using pre-existing data through Bayesian processes is what differentiates EBK from traditional 

kriging.  
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3. Methods  

 3.1 Background on Data and Data Acquisition 

Pre-processed imagery of the Amazon basin was used for this research. The imagery was obtained 

from Dr. Elad Dente and Team at the University of Pittsburgh. This data was in the form of 

shapefiles and imagery, exported from Google Earth Engine. The imagery contained no underlying 

or supporting data but only displayed classified regions of deforestation caused by human activity. 

Width data, in the form of nodes, was downloaded independently from the Surface Water and 

Ocean Topography (SWOT) dataset, specifically the river data contained within the SWOT dataset 

(SWORD). Additionally, the imagery of the yearly centerlines (processed from LANDSAT 

datasets) was obtained. When running his analysis, Dr. Dente filtered out any rivers which had a 

width of under 120 meters. This was done to remove any rivers which could obscure data and 

create even more errors than necessary. It is difficult for satellites to accurately identify rivers 

smaller than 120 meters in width. The same was done for the SWORD dataset before joining it to 

the relevant attribute tables for errors two and four. Lastly, a dataset of known dams in the Amazon 

basin was given in the form of shapefiles. This imagery was inclusive of the entire basin, which 

spans roughly 6,000,000 km2. Additional datasets were downloaded and added to the ArcGIS 

project independently. These included a dataset from Oakridge National Laboratory which 

provided detailed shapefiles for the basin area, a flow length grid, a flow accumulation grid and a 

flow direction grid. A digital elevation model (DEM) of the Amazon was used to confirm the 

general height of regions of interest in the basin. Height was not studied directly in relation to error 

densities. 
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The Amazon Basin 

 

Figure 1 - The Amazon Basin with its rivers shown in white. The Amazon Basin is home to the largest river in the world, as well 

as an estimated 50,000 to 80,000 species. Its 6,000,000 km2 create distinct challenges in studying this area. Dense leaf cover and 

complex topography, as well as yearly cloud cover are all sources of error when using remote sensing techniques to conduct 

research 
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 3.2 Creating New Error Feature Classes 

The first aim of this research was creating point and polygon feature classes to house the new error 

features. Second, the basin was systematically explored for errors visually. Originally only two 

feature classes were created using the ‘create feature class’ tool: one for error points, and one for 

the polygons. Once these feature classes were populated with points and polygons locating errors. 

using the ‘edit and add feature’ tools, a new column was populated with numeric indicators for 

each of the different kinds of errors. A number of one through five was assigned to the errors as 

they are listed above:  

1. Areas which are not part of a river but were automatically identified as one. 

2. Areas where the centerlines abruptly end. 

3. Oxbow lakes which used to be part of a river but were cut off into separate bodies by 

meandering processes over time. 

4. Areas where the river centerlines are missing in either small or large chunks. 

5. Man-made reservoirs which have been automatically identified as river bodies. 

 Using the ‘select by attributes’ tool, separate feature classes were able to be created for the point 

feature classes of each error (using the ‘create feature from selection’ tool). Once these new feature 

classes were created, the points were all manually confirmed to be within their congruent polygons. 

This confirmation was simple done visually, so the ‘contains’ spatial join option could be used. 

The join was then run on each of the point feature classes to join them to the polygons. This 

simplified the data into one all-encompassing feature class for each of the errors.  

 3.3 Optimized Hotspot Analysis (OHS) 

Once the error datasets were completed, statistical analysis was run to determine if there were any 

spatial relationships among the errors or their surrounding areas. First, optimized hot spot analysis 

was run to determine if there were any hot spots among the errors, as well as the dams (Fig.2). 

Optimized hot spot analysis used the Getis-Ord Gi* statistic, which is a spatial autocorrelation 

measure that is used to identify and quantify the clustering of high or low values of a variable 

across a geographical region. The Gi* statistic measures the spatial association between a 

particular location or point and its neighboring units with respect to a specific attribute or variable 

of interest. It then calculates the difference between the observed value and the expected value of 

the attribute for all neighboring units, taking into account the overall mean and variance of the 

attribute for the entire region. No specific analysis field was used for this research. A hexagon grid 
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mesh was chosen over a fishnet grid to better preserve spatial features and create more uniform 

outputs. Hexagon grids also reduce distortion from the earth’s curvature more efficiently than a 

fishnet grid (Zerbe et al., 2022). Automatically calculated hexagon size was also kept for this 

research, since the OSH algorithm attempts to calculate the most optimal size for the inputted data. 

Changing these sizes would have been arbitrary. A bounding polygon was also used in this OHS 

analysis. This bounding polygon is the same one which was used in figure one and can be seen 

above. It creates a prefect outline of the amazon basin. The remaining three error classes, as well 

as the dam feature class had optimized hot spot analysis run on them (Fig. 3, 4, 5, 6).  

 3.4 Spatial Autocorrelation Analysis 

Once the statistically significant hot spots were established, spatial autocorrelation was run in 

relation to the river width. Only the errors which resided directly on the rivers could be spatially 

related to the width, therefore the not a river, oxbow lakes and reservoir datasets were excluded. 

This resulted in p and z-values which will be discussed below. It should be noted that in the original 

centerline dataset rivers which were under 120 meters in width were not included due to the 

difficulties in identifying them. This has caused some errors in mapping missing centerline 

portions, since some small portions of rivers under 120 meters may occasionally become 120 

meters or wider, causing centerline segments to appear randomly.  

 3.5 Hierarchical-Density Based Spatial Clustering (HDBSCAN) 

Hierarchical density clustering was run to determine the spatial location and significance of error 

clusters (Fig.7). This was also repeated for the dam dataset to compare the spatial significance of 

dam locations and dam-related errors. HDBSCAN is a clustering algorithm that can be used to 

identify spatial clusters based on the density of a feature dataset. A minimum cluster value can be 

set in the geoprocessing tool, so eight was chosen to be the minimum number of events to be 

considered a cluster. This was arbitrary due to the small size of the feature datasets. No specific 

literature was found on calculating minimum density feature numbers that were relevant to this 

research. Literature citated in the review above used HDBSCAN techniques and set arbitrary 

cluster values. Points considered to be outliers were excluded and the distance method used was 

Euclidian. The HDBSCAN clusters were visually compared to the relevant OHS output maps to 

see if the spatial patterns matched closely. Output maps had their symbology modified and changed 
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to a ‘Jenks natural break’, as opposed to a ‘stretch’. Changing the symbology to a Jenks break 

allowed for distinct clustering regions to be formed, as opposed to a large spectrum. 

 Reservoirs, which are the error most closely linked to dams, were compared visually on a map. 

The cluster data was also exported from ArcGIS as a CSV and loaded into R. From there the 

clusters were parsed, removing any potential ‘null’ values from the dataset, bound into a scaled 

matrix (and plotted as a dendrogram (see Fig.9). 

3.6 Empirical Bayesian Kriging 

Empirical Bayesian Kriging (EBK) was used to create both a statistical prediction surface, along 

with an error surface for all errors combined (Fig. 8 and Fig. 9). The ‘Geostatistical Wizard’ in 

ArcGIS Pro was used to complete this task. The ‘source data’ was the combined error dataset, and 

the ‘data field’ used was the ‘issue_id’ field, which was the numerical identifier for each error 

type. EBK outputs were generated which indicated the spatial predictions for each type of error 

(i.e., errors one through five). The error surface was included due to the fact that ArcGIS Pro could 

not distinguish the fact that error ID codes were given in whole number intervals. Ranges in values 

were given on the kriging surface, however these should correlate with whole number identifies. 

The error surface was used to derive a better understanding of which whole number values aligned 

more closely to the prediction surface.  
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Figure 2 - Initial map setup and feature class creation workflow. It should be noted that several of the steps were repeated for 

accuracy. This is what the duplicate arrows indicate.  

 

4. Analysis and Discussion  

 4.1 Hot Spot Analysis using Getis-Ord Gi* Statistic 

The hot spots which showed up for the ‘not a river’ error did occur where they were initially 

predicted to (see Fig. 3). Many lakes formed in the flatter, lower elevation offer floodplains that 

can make it easy for lakes to form over time with repeated flooding. While this area appeared to 

be a cluster visually, the Getis-Ord Gi* statistic confirmed that it was a hotspot with 99 percent 

confidence. Similarly, the visual hot spot which appeared in the southern region for the ‘oxbow 

lakes’ error was confirmed by the optimized hot spot analysis (see Fig.4). This cluster was 

confirmed to be a hot spot with 99 percent confidence. The missing centerline errors had several 

hot spots – one in the northwest corner of the ROI and three in the central region toward the east. 

The results were more comprehensive, including confidence regions from ninety-nine down to 

ninety percent. Adjusting the unit size for the hexagons may be appropriate, due to the sheer size 

of the region. All these maps corresponded very closely with the overall error density map. The 
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‘centerlines end’ and ‘reservoir’ errors were not included separately, due to having too few points 

to individually calculate the optimized hot spots. A minimum of thirty independent points were 

required. The Getis-Ord Gi* statistic which ERSI used in their optimized hotspot tool is calculated 

using the following equation: 

𝐺𝑖
∗ =

∑ 𝑤𝑖,𝑗𝑥𝑗 − 𝑋 ∑ 𝑤𝑖,𝑗)𝑛
𝑗=1

𝑛
𝑗=1
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𝑗=1
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𝑗=1

𝑛 − 1

 

 

𝑋 =
(∑ 𝑥𝑗  𝑛

𝑗=1 )

𝑛
 

 

𝑆 =  √ 
∑ 𝑥𝑗

2)  𝑛
𝑗=1

𝑛
− (𝑋)

2
 

 
Eq. 1 - Getis-Ord Gi* equation. In this equation, xj is the attribute value for feature ‘j’, wi,j is the spatial weight between i and j 

and n is equal to the total number of features. ¯X and S are defined above. Gi* returns a z-score, however the ‘Hot Spot Analysis’ 

tool calculates p-values as well. 
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Optimized Hotspot Analysis for all Errors Combined 

 

Figure 3 - Optimized hotspot analysis for all errors combined 
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Optimized Hotspot Analysis for ‘Not a river’ Errors 

 

Figure 4 - Optimized hot spot analysis for 'not a river' error 
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Optimized Hotspot Analysis for Oxbow Lake Errors 

 

Figure 5 - Optimized hot spot analysis for 'Oxbow lakes' error 
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Optimized Hotspot Analysis for ‘Missing Centerline’ Errors 

 

Figure 6 - Optimized hot spot analysis for 'Missing centerline portions' error 
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Optimized Hotspot Analysis for all Known Dams 

 

Figure 7 - Optimized hot spot analysis for dam cluster 
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 4.2 Spatial Autocorrelation using Global Morans 1 

As previously mentioned, rivers which are under 120 meters in width did not have their centerlines 

included in the original dataset. Starting from a null hypothesis, confirmation of whether there was 

a spatial relationship between centerlines ending abruptly and the width of the rivers narrowing 

was tested. Spatial autocorrelation was run using width as the spatially related parameter. ‘Nearest 

Neighbor’ conceptualizations were used, along with Euclidian distance methods. The Global 

Morans 1 statistic used in ArcGIS Pro’s ‘Spatial Autocorrelation’ tool returned a z-score of 

2.246774 for abruptly ending centerlines. Global Morans 1 calculates the z-score using the 

following equation: 

𝑧 =
𝑥 −  𝜇

𝜎
 

Eq. 2 - Global Moran’s 1 z-score equation. In the equation, x is the data point, μ is the mean of distribution and σ is the standard 

deviation of the distribution. 

The z-score indicates that the data point is more than two standard deviations above the mean of 

the distribution. While statistically significant, the dataset is small, which must be taken into 

consideration. The corresponding p-value calculated was 0.024654, however this was ignored due 

to the small size of the feature class. The z-score indicated that there was less than a five percent 

chance that this pattern could have been the result of random chance. A direct correlation was 

discovered between centerlines ending abruptly and river width.  

A Morans 1 index was also calculated. Morans 1 indices range between -1 and 1, with 1 indicating 

strong evidence of spatial correlation. The index calculated for these parameters was 0.377786, 

indicating a spatial relationship. This indicates that it was a good experiment choice for Dr. Dente 

to remove any river width values under 120 meters. This is a complicated issue, however; it should 

be noted that other factors, such as cloud cover and tree cover become important in analyses using 

remote sensing techniques.  

The missing centerlines issue was also related to river width using the ‘Spatial Autocorrelation’ 

tool. Once the rivers under 120 meters were masked out, spatial autocorrelation was run using the 

centerline missing error (error four) as the input dataset and width as the independent variable. A 

z-score of 7.906170 was returned, indicating a less than one percent chance that this pattern 
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occurred by random chance. A Morans 1 value of 0.453954 was also calculated for these 

parameters, indicating a spatial relationship.  

Stream Orders (Strahler) were also correlated to the missing centerline dataset. With stream 

order being the independent variable, a z-score of 2.995589 was returned, as well as a Morans 1 

value of 0.016274. While this relationship was not as significant as the Moran’s value, it still 

shows evidence of being spatially autocorrelated. Stream order is defined as a value between one 

through eleven. When two streams of the same order combine, the outlet increases by one order 

of magnitude. For example, if two order-1 streams combine, the resulting outlet is an order-two 

stream. A plot of the count of each stream order type has been supplied below (Fig.10 ). Steam 

orders of three, four and five combined made up around 87% of all streams in the entire basin. 

Figure 8 - Stream order count vs length  
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This is a strong indicator that smaller rivers and streams account for a large portion of the 

missing centerline errors.  

 4.3 Hierarchical Density Based Spatial Clustering  

HDBSCAN was run on all errors (see Fig. 7). The clustering algorithm first computed the local 

density of each dataset feature. Local density was defined as the number of other features within a 

certain radius of the feature. This radius was automatically calculated by ArcGIS Pro. Starting 

with random features, the algorithm recursively expanded each cluster to include all features 

within the previously calculated radius. Reachability distance, which is the distance used to 

determine whether a feature is part of the current cluster, was calculated based on the local density 

of the feature, using the defined eight-feature parameter. Colors were assigned to each cluster, 

indicating how many clusters were in each given grouping. The points which were labelled as ‘-1’ 

were considered by the algorithm to be ‘noise’ and not connected to any cluster. Subsequent 

listings in the legend indicate clusters of different densities. Lower numbers indicate lower 

numbers of clusters and higher numbers indicate the opposite. Clustering was not based on the 

issue ID; however, the Kriging surface gave an idea of which areas have the highest levels of each 

kind of error. The highest density areas corresponded visually with the outputs from early 

‘Optimized Hot Spot’ analysis. A dendrogram has been created in R to visualize the clustering 

hierarchy. A dendrogram is a ‘tree-like’ plot which shows, in this case, a correlation between the 

distance and the hierarchy of cluster values. Closer distances tend to correlate with higher 

clustering values. This is a helpful visualization for spatial correlation. The first law of geography 

states that “everything is related to everything else, but near things are more related than distant 

things.” This dendrogram displays this law in practice: the closer phenomena tend to cluster at a 

higher rate than the father ones. 
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HDBSCAN Clustering 

   

Figure 9 - HDBSCAN Clustering for all errors combined. ID -1 indicates a ‘noise’ location which is not grouped with any 

particular cluster. Different cluster colors represent the number of individual points within a meaningful cluster with respect to 

distance.   
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Figure 10 - Hierarchical clustering dendrogram of the HDBSCAN clusters for all errors. A dendrogram is a ‘tree-like’ plot which 

shows, in this case, a correlation between the distance and the hierarchy of cluster values. Closer distances tend to correlate with 

higher clustering values. This plot indicates cluster amounts with respect to distance between each respective object being 

evaluated.  

 4.4 Empirical Bayesian Kriging 

EBK was used to create statistical prediction and a corresponding error surface for all errors 

combined. ArcGIS Pro could not understand that the independent variable was a whole number 

integer, and so it created a scale based on these integers. The error surface was useful in 

determining which regions have predicted each error in the strongest way. A power-fit semi 

variogram was used for this prediction surface. Each error corresponded closely to where the 

measured ones were in the dataset. The location of reservoir errors may have been skewed when 
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looking at the dam feature class, but there is a reasons for that. Many of the dams included in the 

dams dataset are located in the western mountains on headwater streams. Many of these smaller 

headwater streams were masked out because they were under 120 meters in width. The prediction 

surface has five value ranges, corresponding to the five error classes. These are 1-1.8; 1.8-2.6; 2.6-

3.4; 3.4-4.2; and 4.2-5, respectively. The means of these ranges were calculated and used as the 

basis for which errors should be most prevalent. The means of the error surface were then 

calculated and subtracted and added to the means on the predictive surface. Whichever whole 

number it came closer was chosen as the candidate. After taking the means of the five EBK outputs 

and subtracting the means of the corresponding error surface values, each surface matched more 

closely to the error ID. ArcGIS’s kriging method and equations are proprietary information, 

however; general kriging equations look like this: 

�̂�(𝑆0) =  ∑ 𝜆𝑖𝑍(𝑆𝑖)

𝑁

𝑖=1

 

Eq. 3 - General kriging equation. In this equation, �̂�(𝑆0) is the measured value at the ith location, 𝜆𝑖 is an unknown weight for the 

measured value at the ith value location, 𝑆0 is the prediction location and N is the number of measurements. 

EBK includes Bayesian methods in their prediction models which includes the idea that prior 

knowledge can be included in the prediction process. In this case, prior knowledge about the 

location of existing errors was included in the predicted outcome surface. locations of existing 

errors. This is most likely due to the use of EBK, as opposed to traditional kriging.  
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Kriging Surface Output for all Errors Combined  

 

Figure 11 - Empirical Bayesian Kriging surface based on error ID. This surface shows the predicted locations where each error   

type is suspected to be most common and where new ones could most likely be located. 
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Kriging Error Surface Output for all Errors Combined  
 

 

Figure 12 - Empirical Bayesian Kriging error surface based on error ID. This indicates how much standard error is associated 

with each prediction for each error type spatially. The legend corresponds one-to-one with the legend on the kriging map above.  
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5. Conclusion  
It was determined that there was a strong correlation between river width and errors two and four 

(centerlines end and missing centerline portion). Z-score indicated that it was very unlikely for 

these patterns to be random. Additionally, stream order was spatially related to the missing 

centerline dataset as well; the z-score indicated less than a five percent chance of occurring 

randomly. Since stream orders 3-5 comprise 87% of all streams in the amazon basin, it was 

determined that stream width (and overall size) was directly correlated with missing centerline 

errors. There were also three hot spots for missing centerline errors detected in the center of the 

basin. This did not necessarily correspond to the area which was originally hypothesized to contain 

most of these errors. One hot spot was detected in the northwest region of the basin in the areas 

with steeper stream slopes. The kriging surface predicted that these kinds of errors would be more 

prevalent in the corners of the maps. Similar to the missing centerline portion errors, prematurely 

ending centerline errors were determined to have a direct correlation to river width. Significant z-

values were derived from using rivers under 120 meters as the independent variable. Many of these 

errors occurred because a small river would widen to 120 meters or wider for short spans, causing 

centerlines to be calculated for these small portions. Areas which were determined to be rivers but 

were not found had hotspots in the center and southeast regions of the map. The kriging prediction 

aligned with the actual surface, as well as the hypothesized hotspots well. The lakes in the region 

which were misclassified tend to be concentrated around the hot spot areas. Oxbow lakes have a 

hotspot in the southern region, as expected. This area contains many braided, meandering rivers. 

They could not be correlated to the SWORD dataset, since they were no longer a part of the actively 

flowing river. Reservoir hotspots originated in regions where there were high levels of 

deforestation and human activity. These regions are mostly in the southern part of the basin. This 

was expected, since reservoirs are created by dams. The kriging surface correlates heavily with the 

dam clusters. Understanding why these errors occur and what kinds of regions are most prone to 

them is crucial for improving this technology for future use. Once problematic areas are identified 

and classified globally, improvements will be able to be made to automatic aping techniques.  

 

 

Special thanks to Dr. Elad Dente for allowing me to use his current data, as well as for his 

guidance. 
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Appendix A: Source Code 
#cbind into scaled matrix 

HDBSCAN_2<-cbind(scale(cbind(HDBSCAN_all_errors[,1:2],HDBSCAN_all_errors[,5:7]))) 

#compute distance matrix 

d <- dist(HDBSCAN_2) 

#hierarchical cluster 

hc <- hclust(d, method = "complete") 

# Plot the dendrogram with custom parameters 

plot(hc,  

     main = "Dendrogram for Amazon Basin Error Clusters", 

     col = "dark green",  

     hang = -1,  

     labels = HDBSCAN_all_errors$OBJECTID, 

     xlab = "Hierarchical Clustering", 

     ylab = "Distance (km)",   

     font.lab = 2, 

     cex.lab = 1.2,   

     cex.axis = 0.8,   

     cex.main = 1.5,   

     font.main = 4,   

     sub = "",   

     hang.leaf = TRUE,   

     cex = 0.7,   

     main.col = "black",   

     sub.col = "black",   

     font.axis = 3,   

     font.labels = 2,   

     col.axis = "black",   

     col.main = "black",   

     col.sub = "black",   

     col.labels = "black"   

) 

box(lwd = 3) 
R- Source code for hierarchical cluster analysis and dendrogram 
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Appendix B: Supporting workflows  

 

Figure 13 - OHS analysis workflow 

 

Figure 14 - Spatial autocorrelation workflow 
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Figure 15 - HDBSCAN workflow 

 

Figure 16 - EBK workflow 
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